Structure and Interface Design Enable Stable Li-Rich Cathode
نویسندگان
چکیده
منابع مشابه
A stable lithium-rich surface structure for lithium-rich layered cathode materials
Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g-1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition...
متن کاملLi-rich Thin Film Cathode Prepared by Pulsed Laser Deposition
Li-rich layer-structured cathode thin films are prepared by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical testing in half battery cells are used to characterize crystal structure, surface morphology, chemical valence states and electrochemical performance of these thin films, resp...
متن کاملA Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries
We report the results of a comprehensive study of the relationship between electrochemical performance in Li cells and chemical composition of a series of Li rich layered metal oxides of the general formula xLi2MnO3 · (1-x)LiMn0.33Ni0.33Co0.33O2 in which x = 0,1, 0.2, 0,3, 0.5 or 0.7, synthesized using the same method. In order to identify the cathode material having the optimum Li cell perform...
متن کاملHigh-performance spinel-rich Li1.5MnTiO4+δ ultralong nanofibers as cathode materials for Li-ion batteries
Recently, composite materials based on Li-Mn-Ti-O system were developed to target low cost and environmentally benign cathodes for Li-ion batteries. The spinel-layered Li1.5MnTiO4+δ bulk particles showed excellent cycle stability but poor rate performance. To address this drawback, ultralong nanofibers of a Li1.5MnTiO4+δ spinel-layered heterostructure were synthesized by electrospinning. Unifor...
متن کاملA stable Li-deficient oxide as high-performance cathode for advanced lithium-ion batteries.
Monodisperse Li-deficient Li(0.35)Ni(0.2)Co(0.1)Mn(0.7)O(2-x) spinel single crystals have been prepared for the first time. The Li-deficient oxide surprisingly delivers large reversible capacity (251.3 mA h g(-1)), outstanding cycle life and low median-voltage of 2.7 V in the range of 2.0-4.9 V. Importantly, high median-voltage (4.4 V) and superior rate capability are also obtained from 3.0 to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2020
ISSN: 0002-7863,1520-5126
DOI: 10.1021/jacs.0c02302